AHA-Allen Initiative

AHA-Allen Initiative Team led by Tony Wyss-Coray, Ph.D.

AHA-Allen Initiative Team at Stanford University

Tony Wyss-Coray, Ph.D., Professor of Neurology at Stanford University School of Medicine, has found in his studies that blood or plasma from young animals or humans can halt or slow brain aging in old mice, and may even improve symptoms for patients with mild Alzheimer’s disease. Now, he will lead a research team on a four-year project to unlock the biological secrets of youth and rejuvenation in young blood. They will search for the damaging proteins and molecules which accumulate in blood with aging, obesity and vascular disease, with the goal to neutralize these factors and protect against age-related diseases. The research team hopes to ultimately figure out how to mimic the beneficial effects of young blood to create new therapeutics for vascular dementia, Alzheimer’s disease, and other aging-related brain disorders. 

Tony Wyss-Coray, Ph.D.

Tony Wyss-Coray is a professor of Neurology and Neurological Sciences at Stanford University, the Co-Director of the Stanford Alzheimer’s Disease Research Center, and a Senior Research Career Scientist at the Palo Alto VA. His lab studies brain aging and neurodegeneration with a focus on age-related cognitive decline and Alzheimer’s disease. The Wyss-Coray research team is following up on earlier discoveries which showed circulatory blood factors can modulate brain structure and function and factors from young organisms can rejuvenate old brains. These findings were voted 2nd place Breakthrough of the Year in 2014 by Science Magazine and presented in talks at Global TED, the World Economic Forum, Google Zeitgeist, and Tencent’s WE Summit in China. Wyss-Coray is the co-founder of Alkahest, a company developing plasma-based therapies to counter age-related diseases such as Alzheimer’s. Current studies in his lab focus on the molecular basis of the systemic communication with the brain by employing a combination of genetic, cell biology, and proteomics approaches in killifish, mice, and humans and through the development of bio-orthogonal tools for the in vivo labeling of proteins.