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The digital reconstruction of a slice of rat somatosensory cortex from the Blue Brain Project pro-
vides the most complete simulation of a piece of excitable brain matter to date. To place these
efforts in context and highlight their strengths and limitations, we introduce a Biological Imitation
Game, based on Alan Turing’s Imitation Game, that operationalizes the difference between real
and simulated brains.
The much awaited opus magnum of the ‘‘Blue Brain Project’’

(‘‘BBP’’) is appearing in this issue of Cell (Markram et al.,

2015). The brain child, so to speak, of the electrophysiologist

Henry Markram, the BBP is a large-scale, international collabo-

rative effort that seeks to simulate a synthetic brain using biolog-

ically realistic models of synapses and nerve cells. The BBP is

an exceptional (neuro)-engineering effort based on a bold and

long-term vision. To be successful, it requires meticulous atten-

tion to detail, a highly interdisciplinary team, and large-scale

and stable resources. Financially, it is backed by the Swiss gov-

ernment, with more recent contributions by the pan-European

Human Brain Project.

Initiated a decade ago, the ambitious aims of the BBP are to

amass all relevant knowledge pertaining to themammalian brain;

to distill the associated information into an integrated, standard-

ized, and open-access database; and to endow this massive yet

static entity with life by simulating spontaneous and sensory-

driven synaptic activity and the associated cellular electrical

responses using partial differential equations. The Cell paper

describes a first-draft digital reconstruction of a section of rat

somatosensory cortex. It is, without doubt, the most complete

simulation to date of a piece of excitable brain matter.

The utility of such massive simulations has been much

debated—in particular, as they relate to the ill-defined goal of

‘‘understanding the brain’’ that is on the masthead of the Human

Brain Project and the other large-scale brain projects initiated

over the last 3 years (Kandel et al., 2013). So before we dive

into the details, let us step back and consider how best to think

about this category-defying model.

Introducing a Biological Imitation Game
In an effort to circumvent the question ‘‘can machines think’’?,

the mathematician Alan Turing (Turing, 1950) introduced ‘‘The

Imitation Game’’ in which an interrogator is tasked with deter-

mining the identity of two examinees as ‘‘male’’ or ‘‘female.’’

This game is imagined to be played by human beings. Turing

introduced as a measure of the thinking ability of machines

the length of time the Interrogator needed to play before realizing

that one of the other players had been replaced by a machine.

The longer this takes, the more this machine could be argued

to operationally behave like a thinking human.

Let us imagine our own Imitation Game, in which a lead inves-

tigator running a lab is recording from neocortical neurons in a
rat but has also devised a sophisticated computer model of its

electrical behavior. Being quite busy with grant writing and other

administrative tasks, she rarely enters the lab, relying instead on

reports from her students and postdocs.

After some discussion, they agree on a protocol X—say, stim-

ulate sensory input into somatosensory cortex while recording

from layer 5 pyramidal neurons. The experimentalists in her lab

judiciously carry out these manipulations and bring her a set of

plots—extra-cellular recordings, current source density plots,

and so on. Their computational colleagues do likewise and

generate the same type of graphs. Let’s call these, respectively,

A(X) and B(X).

For the purposes of this operational definition, we assume

that the investigator does not know whether A or B is the

experimental data, taken here as ground truth. Both look super-

ficially similar. To distinguish between the real data, A(X), and

the simulated data, B(X), the investigator must devise clever ex-

periments for her group to carry out on both, probing for the

simulation’s failure modes. Clearly, the longer that it will take

the investigator, given her accumulated knowledge and insights

about real brains, to confidently identify the provenance of the

data, the more the model can be said to mimic the real system.

We take as a measure of the quality of the simulation the length

of time it takes her to confidently identify the provenance of

the data and the level of sophistication of question required

to do so.

Thus, the question of how good any one computer simulation

of reality is can be replaced by an operational measure of how

long an expert can be fooled by the simulation. As the model

becomes more and more sophisticated, this will take longer

and longer. In the limit of a completely faithful digital simulacrum,

reliably judging which is real and which is synthetic will become

impossible. Note that, in the spirit of Turing, our operational

definition bypasses eristic discussions of what is meant by

‘‘understanding’’ the brain.

Looking Under the Hood
Wewill nowsummarize theapproach takenby theBBP team. The

model simulates a segment of 2-week-old rat somatosensory

cortex, 2 mm tall and 210 mm in radius, about the size of

a cortical column. The individual nerve cells are derived from

theMarkram laboratory’s heroic efforts over almost two decades

to record and labelmore than 14,000 neurons in slices taken from
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Bachelor #1: What is your favorite neurotransmitter to release

during spreading waves? Illustration by Phil Lesnar, courtesy of

the Allen Institute.
youngmaleWistar rats (e.g., Markram et al., 1997 and 2004). The

dendritic trees and local axonal morphologies of 1,009 of these

cells are completely digitally reconstructed in 3D. The cells fall

into 55 morphological classes, as determined by the layer in

which the cell bodies were located and their morphology:

42 GABAergic and 13 glutamergic types. This is roughly in line

with the literature (Harris and Shepherd 2015). The electrical

properties of these neurons are inferred by recording from the

cell bodies of 3,900 neurons in young rat slices. Using a standard

electrophysiological protocol, 11 types of firing patterns—ten

associated with inhibitory and one (continuous adapting)

with excitatory cells—can be distinguished. From a combined

dataset of 511 morphologically and electro-physiologically char-

acterized neurons, the BBP team infers 207 morpho-electrical

types (207 out of a possible 55 3 11 = 605 cell types).

Next, the team populates their column with 31,320 neurons

drawn from these 207 types, with multiple clones of each cell

type randomly and independently spatially distributed across

five layers (L1, L2/3, L4, L5, and L6) in accordance with

measured cell densities and immunohistochemical staining.

The electrical behavior of each neuron is modeled using

a classical Hodgkin-Huxley formalism extended to include 13

voltage- and calcium-dependent conductances inserted into

the membrane at the cell body and the proximal and distal den-

dritic tree (Hay et al., 2011).

At this stage, these neurons with their thick dendrites and

thin non-myelinated axons are scattered throughout the cylin-

drical volumes, a dense jungle with roots, flowering plants,

brushes, trees, and their canopy intertwined. Both cortex and

forest share a predominantly vertical organization. They differ

as only the former have highly specialized junctions among

their members, chemical synapses that convert electrical activ-

ity in presynaptic axonal boutons into neurotransmitter release
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and back into electrical activity at postsynaptic sites on spines,

dendrites, or cell bodies.

The Connectomics Algorithm
But where to place the all-important synapses? Here, we come

to the beating heart of the BBP, an algorithmic approach to

reconstruct synaptic connections (described in detail in a com-

panion paper [Reimann et al., 2015]). Whenever an axonal

profile comes into close encounter with a dendrite, a potential

synapse is marked. Such a potential synapse is the child of

chance, based on the probabilities that an axonal bouton finds

itself near a dendrite. This is known as Peter’s rule, stipulating

that axons seek out dendrites randomly—the higher the bouton

density and the larger the dendrite, the bigger the connection

probability. By this measure, most neurons connect to most

other neurons (there are, after all, close to one billion synapses

in each mm3 of gray matter). Peters’ rule places a hard

constraint on the connectivity, in the sense that both axons

and dendrites need to be simultaneously present for a synapse

to form.

Reimann and colleagues (Reimann et al., 2015) know from

light- and electron-microscopic data derived by a great many

labs, including their own, that any one functional connection

among two neurons is implemented by many anatomical synap-

ses. Put differently, if two cortical neurons are connected, they

form anywhere between a handful and perhaps 20 anatomical

synapses; only rarely does a single synapse connect two neu-

rons. The observation that simple axonal-dendritic proximity—

which would predict a majority of singleton connections—does

not explain connectivity highlights the limit of Peters’ rule. It

also points to the existence of learning rules that prune and

grow synaptic connections.

The BBP captures such observed anatomical and morpholog-

ical constraints in a probabilistic connectomics algorithm that

prunes the vast number of spatial appositions, leaving a much

smaller number of actual anatomical synapses: 638 million

potential synapses yield 37 million actual synapses that form

8.1 million connections, with 3.6 excitatory and 13.9 inhibitory

synapses per connection (all values given here are averages;

the paper gives statistical distributions). These data are com-

patible with a recent electron-microscopic reconstruction of a

sliver of cortical tissue (Kasthuri et al., 2015).

The physiology of these 37 million synapses is based on

extrapolated data from paired-cell recordings, including their

all-important short-term facilitating or depressing dynamic

behavior. 207 types of neurons could, in principle, be connected

using 207 3 207 = 42,849 different types of synapses. Unfortu-

nately, for the vast majority of synaptic types, no experimental

recordings are available, and reasonable inter- and extrapola-

tions and assumptions must come to the rescue.

Booting up the Virtual Slice
With synaptic input in place, fortified by somatic depolarization

of cells to facilitate their firing (mimicking arousing neuromodula-

tor substances active under in vivo conditions) and some spon-

taneous synaptic release, the transmembrane potential of each

cell evolves according to the nonlinear cable equation. This is

a partial differential equation that describes how the membrane



potential evolves in thin and elongated neuronal processes

whose membrane properties are described by capacitive and

conductive processes (Koch 1999). The numerical simulation

uses a parallel version of the NEURON software that has been

instrumental to the field (Carnevale and Hines 2006), running

on an IBM Blue Gene/Q supercomputer at the Swiss National

Supercomputing Center (CSCS) in Lugano.

Powering up this digital slice yields reasonable-looking firing

behavior and slow oscillatory bursts at 1 Hz. The simulation

goes through some finger exercises, demonstrating its neuro-

biological authenticity. The overall network activity is very sen-

sitive to the extracellular calcium concentration [Ca2+]o and the

level of somatic depolarization of all neurons. [Ca2+]o, varying

between 1 mM under in vivo and 2 mM under in vitro con-

ditions affects the probability of synaptic release. In effect,

[Ca2+]o controls the network’s susceptibility to synaptic pertur-

bation, while the depolarization level controls the spontaneous

firing of the neurons. Manipulating these variables flips the

network between two qualitatively different dynamic regimes.

Under in vitro conditions ([Ca2+]o = 2 mM and less somatic

depolarization), the network is highly responsive to perturba-

tions, producing stereotypical and synchronized responses,

such as spreading waves (Figure 14 in Markram et al., 2015),

while under in vivo conditions ([Ca2+]o closer to 1 mM and

greater somatic depolarization), responses are graded and

asynchronous. This transition is quite sharp and is mediated

by differential changes in the excitatory to inhibitory synaptic

balance.

Given the very large number of approximations and extrapola-

tions that underlie the BBP model, the fact that neurons do not

erupt into either a paroxysm of epileptic discharge nor descend

into a coma-like state of electrical silence but act, to a first order,

as neurons in slices do, is a remarkable achievement. This is an

important initial success in our Imitation Game, for the very

reason that it allows the game to continue. Our investigator

can begin asking tougher questions (of course, it also begs the

question of whether all of these details were necessary in the first

place, to which we will return later on).

Pushing further, the BBP team highlights aspects of in vivo ac-

tivity that are recapitulated by the model—in particular, the

extent to which groups of neurons are active in a correlated

manner (for instance, when spikes fire near simultaneously),

have no particular temporal relationship, or are anti-correlated.

Indeed, the digital simulacrum exhibits the same correlational

structure as predicted on theoretical grounds and observed in

rodent cortex by Renart et al. (2010). In particular, activities in

excitatory and inhibitory neurons track each other, generating

negative correlations in synaptic structure that cancel strong

shared input. Similarly, the simulation shows repeating triplet

structures in the synchronous regime that do not appear in the

asynchronous regime of low calcium. Finally, a recent experi-

mental study of Okun et al. (2015) establishes the existence of

many highly correlated ‘‘chorister’’ neurons and a few isolated

‘‘soloists.’’ The former are neurons whose activity is tightly corre-

lated with the average activity of the network that they are

embedded in, while the latter appear to actively fire indepen-

dently of the rest of the network. The simulation recapitulates

this observation as well.
These demonstrations are comforting validations of the

model in terms of our Imitation Game. Of course, the transition

observed by the BBP team is clearly describable by simple

models (there is a long history, with notable contributions

fromWilson andCowan (1972) and Amari (1975) of appliedmath-

ematics devoted to the solution space of so-called ‘‘neural field

theories,’’ demonstrating complex behavior as neural character-

istics are varied (see Bressloff, 2014), including spreading waves

(Beurle, 1956).

The most interesting observation of the present study is the

sensitivity of network behavior to extracellular calcium concen-

tration and that propagating waves may be an artifact of too

high [Ca2+]o levels (which would not, however, explain the waves

seen in Xu et al., 2007). Yet the enormous effort of the BBP to

carefully reconstruct details of the cortical circuit are probably

irrelevant to this prediction, as the dependency on extracellular

calcium appears to enter through an empirical model of synaptic

neurotransmitter release and not through any network dynamics.

In the same vein, the mechanism of Renart et al. (2010) was

obtained in a model of conductance-based integrate-and-fire

neurons. The additional detail added by the BBP does not affect

the mechanism.

Uncovering the Limits of the Model
In the Imitation Game, there is one cunning strategy that is

guaranteed to lead to the denouement of the impostor.

Simply probe further and further into the micro-structure: while

it is not clear whether there is any ‘‘ultimate’’ level of reality—

elementary particles such as the Higgs boson, fields, or super-

strings (depending on the energy invested in probing the

micro-structure) —simulations abruptly bottom out. To wit, the

investigator could ask her lab members to resolve fine details

of the macroscopic Na+, K+, Ca2+, and Cl� membrane currents.

If appropriate electrodes and amplifiers are used, the recordings

will uncover discrete, microscopic, and stochastic ionic chan-

nels, while the current BBP model stops with the continuous

and deterministic Hodgkin-Huxley currents. Bingo!

And therein lies an important lesson. If the real and the syn-

thetic can’t be distinguished at the level of firing rate activity

(even though it is uncontroversial that spiking is caused by the

concerted action of tens of thousands of ionic channel proteins),

the molecular level of granularity would appear to be irrelevant

to explain electrical activity. Teasing out which mechanisms

contribute to any specific phenomena is essential to what is

meant by understanding.

Markram et al. claim that their results point to the minimal

datasets required to model cortex. However, we are not aware

of any rigorous argument in the present triptych of manuscripts

(Markram et al., 2015; Ramaswamy et al., 2015; Reimann

et al., 2015), specifying the relevant level of granularity. For

instance, are active dendrites, such as those of the tall, layer 5

pyramidal cells (Hay et al., 2011), essential? Could they be

removed without any noticeable effect? Why not replace the

continuous, macroscopic, and deterministic HH equations with

stochastic Markov models of thousands of tiny channel conduc-

tances? Indeed, why not consider quantum mechanical levels

of descriptions? Presumably, the latter two avenues have not

been chosen because of their computational burden and the
Cell 163, October 8, 2015 ª2015 Elsevier Inc. 279



intuition that they are unlikely to be relevant (Strassberg and De-

Felice, 1993; Koch and Hepp, 2006). The Imitation Game offers a

principled way of addressing these important questions: only

add a mechanism if its impact on a specific set of measurables

can be assessed by a trained observer.

Consider the problem of numerical weather prediction and

climate modeling, tasks whose physico-chemical and computa-

tional complexity is comparable to whole-brain modeling.

Planet-wide simulations that cover timescales from hours to

decades require a deep understanding of how physical systems

interact across multiple scales and careful choices about the

scale at which different phenomena are modeled. This has led

to an impressive increase in predictive power since 1950,

when the first such computer calculations were performed

(Bauer et al., 2015). Of course, a key difference between weather

prediction and whole-brain simulation is that the former has a

very specific and quantifiable scientific question (to wit: ‘‘is it

going to rain tomorrow?’’). The BBP has created an impressive

initial scaffold that will facilitate asking these kinds of questions

for brains.

What is also noteworthy is that, with the publication of this

paper, the BBP has publicly released a treasure trove of morpho-

logical, electrical, and connectional data collected over the last

years by members of the Markram lab that was used in this

model. For more details, see the companion manuscript (Ram-

aswamy et al., 2015). The experience of the Allen Institute

(www.brain-map.org) has demonstrated the impact of releasing

all relevant data and models soon after they pass an internal

quality control stage (usually several years prior to publication

of any associated results). The release of the massive database

of the BBP is thus a very positive development.

It is clear that physically detailed, whole-brain simulations

enable neuroscientists to answer specific questions that are

difficult to address experimentally. The BBP has provided a

powerful tool in this regard. Such simulations may be essential

to develop therapeutics for brain-based diseases. Whole-brain

models can also be said to encapsulate the present state of

knowledge, as per the Imitation Game. However, any simula-

tion-gained knowledge must be supported and complemented

by theories that, by isolating the relevant variables, enable us

to deeply understand the most organized and highly excitable

piece of matter in the known universe.
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